Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iteration Process
نویسندگان
چکیده
منابع مشابه
Approximating Fixed Points of Nonexpansive Mappings
We consider a mapping S of the form S =α0I+α1T1+α2T2+···+αkTk, where αi ≥ 0, α0 > 0, α1 > 0 and ∑k i=0αi = 1. We show that the Picard iterates of S converge to a common fixed point of Ti (i = 1,2, . . . ,k) in a Banach space when Ti (i = 1,2, . . . ,k) are nonexpansive.
متن کاملApproximating Fixed Points of Nonexpansive Mappings
Let D be a subset of a normed space X and T : D → X be a nonexpansive mapping. In this paper we consider the following iteration method which generalizes Ishikawa iteration process: xn+1 = t (1) n T (t (2) n T (· · ·T (t (k) n Txn + (1− t (k) n )xn + u (k) n ) + · · · ) +(1− t n )xn + u (2) n ) + (1− t (1) n )xn + u (1) n , n = 1, 2, 3 . . . , where 0 ≤ t (i) n ≤ 1 for all n ≥ 1 and i = 1, . . ...
متن کاملIshikawa Iteration Process with Errors for Nonexpansive Mappings
We study the construction and the convergence of the Ishikawa iterative process with errors for nonexpansive mappings in uniformly convex Banach spaces. Some recent corresponding results are generalized. 2000 Mathematics Subject Classification. 47H10, 40A05.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1309